A Novel Diterpenoid from the Soft Coral Sarcophyton crassocaule

XU, Xiao-Hua* ((徐效华) KONG, Chui-Hua (孔垂华) LIN, Chang-Jiang (林长江) WANG, Xin (王昕) ZHU, Ying-Dong (朱应栋) YANG, Hai-Shen (杨海申)

A novel hydroperoxide cembrane-type diterpenoid was isolated from the soft coral <code>Sarcophyton crassocaule</code> collected from the Xisha Islands in the South China Sea. The structure of 3 was established by spectroscopy and X-ray diffraction analysis , named as <code>sarcophyocrassolide A</code>. It exhibited strong cytotoxicity against the P-388 cell line with IC_{50} value of 0.1 $\mu g/mL$.

Keywords soft coral , $Sarcophyton\ crassocaule$, sarcophyocrassolide A

Introduction

The soft coral of the genus Sarcophyton is known to contain secondary metabolites with unique cembrane-type diterpenoids and remarkable activities. Their biological activities for inhibiting tumor promotion have made them intriguing. As a part of our study , we were interested in the genus Sarcophyton crassocale because of the anticancer activity of its CHCl3 extract against P-388 (mouse lymphocytic leukemia). In previous reports , one new compound 2 and one known compound 1 , α -methylene- γ -lactone cembranes were reported. Further investigation of CHCl3 extract of this species led to the isolation of a novel hydroperoxide cembrane-type diterpenoid , named as Sarcophycrassolide A. Here structure of 3 is reported. To our knowledge , it is the first example that possesses 8-hydroperoxide group in α -methylene- γ -lactone cembranolide skeleton.

Results and discussion

Compound 3, colorless needle crystals , m.p. 172—174 °C. The HRFABMS exhibited a molecular ion peak at m/z 367.2215 (M + 1)+ , corresponding to $\rm C_{20}H_{30}O_6$, and the unsaturation was 6. The IR spectra showed the hydroxyl group (3444 cm $^{-1}$), carbonyl group (1756 cm $^{-1}$) and double bond (1630 cm $^{-1}$). A strong UV absorption at $\lambda_{\rm max}$ 236 nm showed the presence of an α , β -unsaturated carbonyl group. In DEPT experiment , the 20 resonance lines were assigned to three methyls , seven methylenes ,

five methines and five quaternary carbons, and revealed the presence of one carbonyl carbon, two double bonds, and five oxygenated carbons. Therefore compound 3 must be three cyclic structure. Based on the analysis of ¹H-¹H COSY and ¹H-¹³C COSY, three partial structures could be established as A—C.

Two sharp doublets at $\delta_{\rm H}$ 6.35 (d , J = 2.0 Hz) and 5.72 (d , J = 2.0 Hz) showed the presence of an exocyclic α -methylene lactone ring. This was supported by $^{13}{\rm C}$ NMR [$\delta_{\rm C}$ 169.0 (s), 138.2 (s), 123.3 (t)] and IR spectra (1756 cm $^{-1}$) and a secondary oxygenated carbonsignal at $\delta_{\rm C}$ 78.8 hinted at a γ -lactone. 7 Carbon sig-

В

C

^a Institute of Elemento-Organic Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China

b Institute of Tropical and Subtropical Ecology , South China Agricultural University , Guangzhou , Guangdong 510642 , China

E-mail: xxiaohua@public.tpt.tj.cn
 Received May 15, 2002; revised March 10, 2003; accepted July 1, 2003.
 Project supported by the Key Science Foundation of Tianjin (No.013804411).

nals were observed at $\delta_{\rm C}$ 60.2(s) and 55.7(d), and a proton signal at $\delta_{\rm H}$ 3.02 (t, $J = 9.6~{\rm Hz}$, 1H) indicated the presence of a trisubstituted epoxide. Three remaining oxygenate carbons exist two carbon signals at $\delta_{\rm C}$ 85.6(s) and $\delta_{\rm C}$ 77.3(s), respectively. It hinted that compound 1 most likely possessed a hydroperoxide group. Two olefinic methine proton signals at $\delta_{\rm H}$ 5.54 (d , J = 16.0 Hz , 1H) and 5.23 (ddd , J=4.8 , 9.9 , 16.0 Hz , 1H) implied the presence of a trans ethylenic double bond. The ¹H NMR showed signals for three tertiary methyl groups at $\delta_{\rm H}$ 1.22, 1.31 and 1.59. Based on the HMBC correlation of 1, the partial structure A—C could be connected as a cembranolide skeleton. From the HMBC experiment, the positioning of γ -methylene lactone at C-15, C-1, C-17, C-14 and C-16 (carbonyl carbon) was confirmed by longrange correlations between H-1 and C-2, C-3, C-15, C-16 and C-17; H-14 and C-2 and C-16; and H-17 and C-1, C-15 and C-16. The methyl-bearing trisubstituted epoxide at C-3 (methane), C-4 (quaternary carbon) was deduced from HMBC correlations between H-2 and C-1, C-3, C-4, C-14 and C-15; H-3 and C-2 and C-4; H-5 and C-3, C-4, C-6, C-7 and C-18; H-18 and C-3, C-4 and C-5; H-6 and C-4, C-5, C-7 and C-8. The methyl group attached at C-8 was confirmed by HMBC correlations between H-19 and C-7, C-8 and C-9; H-7 and C-5, C-6, C-8, C-9 and C-19. The other methyl group attached at C-12 was re-

vealed by the HMBC correlations between H-20 and C-11, C-12 and C-13; H-11 and C-20. All of ¹H and ¹³C NMR signals were unambiguous assigned based on ¹H-¹H COSY and ¹H-¹³C COSY and HMBC experiment (Table 1). The relative stereochemistry of compound 1 was determined by a NOESY experiment , the NOE correlations from H-14 to H-1 and 20-Me, and H-1 to H-14 and H-3 indicated that these protons were on the same face of the 14-membered ring and were assigned as the α -protons. On the other hand , H-6 show NOE responses with H-5 β and 19-Me , but not with H-7, and the β -orientation 19-Me as well as the trans orientation of the Δ^6 double bond were confirmed. The conformation was also implied by the strong NOE correlation between 18-Me and H-5 α . Furthermore, in order to confirm the position of -OOH group, the molecular structure and relative stereochemistry, an X-ray structure analysis was made. The result showed that the - OOH group attaches to C-8 which is close to the vinylic H-7 proton ($\delta_{\rm H}$ 5.54). The bond distances and bond angles are listed in Tables 2 and 3.

In the process of isolation , the extract was avoided to contact any solvents containing peroxy compounds. It is impossible that the hydroperoxide group is formed artificially. Compound 1 was named as sarcocrassolide A.

Sarcocrassolide A exhibited strong cytotoxic activity against P-388 cell line with IC₅₀ value of 0.1 μ g/mL.

 Table 1
 NMR data of compound 1 (AM-500 MHz) in CDCl3

Number	$\delta_{ m H}$	$\delta_{ m C}$	Key HMBc
1	3.58—3.60(m,1H)	40.8(d)	
2α	2.74 (ddd , J = 2.0 , 4.1 , 14.8 Hz)	29.4(t)	
2β	1.52—1.57 (m)		
3	3.02 (t, $J = 9.6$ Hz)	55.7(d)	
4		60.2(s)	C-4, H-2, 3, 5, 6, 18
5α	2.52 (dd , $J = 4.8$, 14.7 Hz)	38.9(t)	
5	2.32 (dd , J = 9.9 , 14.7 Hz)		
6	5.23 (ddd , J = 4.8 , 9.9 , 16.0 Hz)	125.3(d)	
7	5.54 (d, $J = 16.0 Hz$)	137.8(d)	
8		85.6(s)	C-8, H-6, 7, 9, 10, 19
9	1.48—1.52(m,2H)	38.3(t)	
10α	1.29—1.31(m)	22.5(t)	
10β	1.13—1.17(m)		
11α	1.95—1.98(m)	31.0(t)	
11β	1.12—1.14(m)		
12		77.3(s)	C-12, 10, 11, 13, 14, 20
13α	2.04 (dd , J = 6.0 , 13.8 Hz)	37.8(s)	
13β	1.70 (dd, $J = 3.6$, 13.8 Hz)		
14	4.54 (ddd , J = 3.6 , 6.0 , 9.8 Hz)	78.8(d)	
15		138.2(s)	C-15, H-1, 2, 14, 17
16		169.0(s)	C-16, H-1, 14, 17
17α	6.35 (d, $J = 2.0 \text{ Hz}$)	123.3(d)	
17β	5.72 (d, $J = 2.0$ Hz)		
18	1.22(s)	18.8(q)	
19	1.31(s)	22.7(q)	
20	1.59(s)	24.2(q)	

Table	2.	Selected	hand	lengths (nm`	١
1 anic	4	Serecteu	Dona	rengins v	. 111111	,

0(1)—0(16)	0.1365(3)	0(1)—0(14)	0.1459(2)	_	
0(2)—((16)	0.1200(3)	0(3)—0(3)	0.14529(2)		
0(4)—0(6)	0.1322(3)	0(4)—0(8)	0.1454(3)		
⟨(5)−⟨(6)	0.1486(4)	⟨(6)—⟨(7)	0.1328(3)		
0(5)—((12)	0.1456(3)	Q(1)—Q(15)	0.1510(3)		
⟨(1)−⟨(2)	0.1532(3)	0(2)—0(3)	0.1502(3)		
⟨⟨3⟩−⟨⟨21⟩	0.1453(3)	0(21)—0(5)	0.1508(4)		
α 8)— α 9)	0.1525(4)	((7)—((8)	0.1507(3)		
α 9)— α 10)	0.1525(3)	Q(10)—Q(11)	0.1531(3)		
Q(11)—Q(12)	0.1536(3)	0(12)—0(13)	0.1521(3)		
Q(13)—Q(14)	0.1522(3)	0(12)—0(20)	0.1534(3)		
Q 15)—Q 17)	0.1317(3)	Q(15)—Q(16)	0.1484(3)		

Table 3 Selected bond angles (°)

109.94(16)	((3)-((3)-((21)	61.11(14)	
114.2(2)	(15)(1)(2)	111.28(17)	
100.61(17)	((2)((1)((14)	116.93(18)	
114.93(19)	0(3)0(3)0(21)	59.50(14)	
118.22(18)	(21)(3)(2)	124.9(2)	
59.39(14)	0(3)-0(21)-0(5)	120.6(2)	
115.5% 19)	(7)(6)(5)	125.9(2)	
124.9(2)	0(4)-0(8)-0(7)	102.3(2)	
109.11(19)	Q7)Q8)Q9)	113.06(19)	
110.7(2)	Q7)Q8)Q9)	111.6(2)	
117.2(2)	Q 10) Q 11) Q 12)	114.41(17)	
112.61(19)	Q 20)-Q 12)-Q 11)	112.13(18)	
123.46(18)	$0(1)\cdot0(14)\cdot0(1)$	105.99(16)	
111.33(18)	Q 17) Q 15) Q 16)	122.2(2)	
121.4(2)	0(2)-0(16)-0(15)	129.8(2)	
	114.2(2) 100.61(17) 114.92(19) 118.22(18) 59.39(14) 115.58(19) 124.9(2) 109.11(19) 110.7(2) 117.2(2) 112.61(19) 123.46(18) 111.33(18)	114.2(2) $(15)(1)(2)$ $100.61(17)$ $(2)(1)(14)$ $114.9(19)$ $(3)(3)(21)$ $118.2(18)$ $(21)(3)(2)$ $59.3(14)$ $(3)(21)(5)$ $115.5(19)$ $(7)(6)(5)$ $124.9(2)$ $(4)(8)(7)$ $109.11(19)$ $(7)(8)(9)$ $110.7(2)$ $(7)(8)(9)$ $117.2(2)$ $(10)(11)(12)$ $(12.61(19))$ $(20)(12)(11)$ $(12.46(18))$ $(1)(15)(15)(16)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Experimental

General procedures

Melting point was taken on an X-4 micro-melting point apparatus. IR spectra were recorded on a Nicolet 5DX FT-IR spectrophotometer. UV spectra were determined on a Shimadzu UV-160A spectrophotometer. NMR spectra were recorded on an AM-500 MHz spectrometer. Mass spectra on a Krator MS 50 instrument. X-Ray data were collected on a SMART CCD diffractmeter.

Soft coral material

The soft coral *Sarcophyton crassocaule* was collected from the Xisha Islands of the South Sea of China in 1998.

Extraction and isolation

The chopped soft coral (wet weight $5\ kg$) was extracted with EtOH at room temperature , the combined extracts

were concentrated in vacuo , and the residue was partitioned between CHCl₃ and H₂O . The CHCl₃ soluble portion was subjected to silica gel column chromatography with CHCl₃ containing increasing of MeOH . Elution by CHCl₃-MeOH (9:1 , V:V) afforded fractions containing 1 , 2 and 3 which was purified by a silica gel column with n-hexane-EtOAc (2:1 , V/V) as eluting solvent. The fractions afforded compounds 1 (40 mg) and 2 (23 mg), named as scracophyocrassolide B , and was further purified by preparing PTLC and afforded compound 3 (35 mg), named as scracophyocrassolide A .

Scracophypcrassolide A , needle crystals , m.p. 172—174 °C (MeOH) ; IR (KBr) ν : 3444 (OH) , 1756 (C = O) , 1630 , 1463 , 1394 , 1370 , 1189 cm $^{-1}$; UV $\lambda_{\rm max}$: 236 nm ; HRFABMS m/z : 367.2215 (M + 1) $^+$; NMR data see Table 1 .

Single-crystal X-ray crystallography

Suitble colorless Prisms of ${\bf 1}$ were obtained from a mixture of CHCl₃-acetone , the crystal ($0.36~\text{mm} \times 0.15$

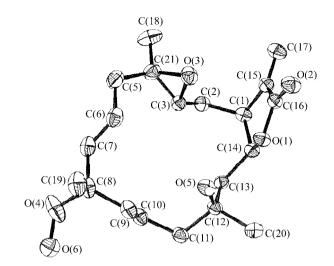


Fig. 1 Molecular structure of scarcophycrassolide A.

mm × 0.10 mm) was selected for single-crystal X-ray analysis. X-Ray data were collected at room temperature on a SMART CCD diffractmeter equipped with a normal-focus up to $2.02^{\circ} \le \theta \le 25.11^{\circ}$. A total of 8652 reflections were collected , which of 5677 were unique [$1 > 2\sigma(I)$]. The

structure was solved by direct method and refined by full-matrix least-squares procedure. The nonhydrogen atoms were given anisotropic thermal parameters. The crystal belongs to the monoclinic system , space group $P2_1$ with a=0.8688(16) nm , b=0.59847(10) nm , c=1.79351(3) nm , $\beta=0^\circ$, V=0.9276(3) nm³ , Z=2 , $D_c=1.305$ g/cm³ , λ (Mo K α) = 0.071073 nm. The refinement converged to a final R=0.0452 , Rw=0.1123.

References

- Rodriguez , A. D. ; Dhasmana , H. J. Nat. Prod. 1993 , 56 , 564.
- 2 Iguchi , K. ; Shimura , H. ; Yamada , Y. J. Nat. Prod. 1992 , 55 , 1779.
- 3 Iwashima , M. ; Matsumoto , Y. ; Takahashi , H. ; Iguchi , K. J. Nat. Prod. 2000 , 63 , 1647.
- 4 Duh , C. Y. ; Hou , R. S. J. Nat. Prod. $\mathbf{1996}$, 59 , 595.
- 5 Masaru, K. Chem. Pharm. Bull. 1988, 36, 488.
- 6 Xu, X.-H.; Kong, C.-H.; Lin, C.-J.; Wang, X. Chem. J. Chin. Univ. (in Chinese) in press.
- 7 Duh, C. Y.; Wang, S. K.; Chung, S. G. J. Nat. Prod. 2000, 63, 1634.

(E0205157 ZHAO, X. J.; DONG, H. Z.)